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Abstract--Weakly non-linear Marangoni convection in a horizontal layer of an electrically conducting 
fluid heated from below and submitted to a uniform vertical magnetic field is investigated. The influence 
of the strength of the magnetic field on the nature of the convective patterns and their stability is analyzed 
by using the amplitude method. To examine the role of the thermal properties of the lower rigid boundaries, 
two different situations are, respectively, treated, namely a perfectly heat conducting and an adiabatically 
isolated wall. The presence of a subcritical region whose area generally decreases with the magnetic field is 

displayed. @ 1998 Elsevier Science Ltd. 

1. INTRODUCTION 

Convective instability in thin fluid layers heated from 
below and driven by surface-tension variations has 
been the subject of numerous works since B6nard's 
remarkable experiments. When the single motor of 
instability is the variation of surface tension with tem- 
perature, one speaks about the Marangoni effect ; the 
first theoretical analysis of Marangoni convection was 
that of Pearson [1]. When only buoyancy is respon- 
sible for the occurrence of motion, the effect is usually 
referred to as Rayleigh-B6nard effect. The latter is 
widely discussed in Chandrasekhar's celebrated book 
[2], at least the linear problem. 

Convective flows are of practical importance in sev- 
eral domains of application, like liquid bridges, pool 
boiling, motion through porous media, crystal growth 
from a melt, thermal transfer problems, etc., but it is 
often desirable to delay the onset of convection ; this 
can, in particular, be achieved by the application of a 
magnetic field. The interaction between magnetic field 
and convection is directly observed on the sun; due 
to high temperature fields, the gases are ionized and a 
strong magnetic field is generated which inhibits nor- 
mal convection. It is well recognized [3] that when a 
magnetic field is imposed on an electrically conducting 
fluid, the fluid motion is slowed down because of the 
interaction between the induced electrical current and 
the external magnetic field. This kind of interaction is 
frequently met in geophysics, astrophysics and engin- 
eering. 

Thermal convection in presence of a magnetic field 
has been extensively investigated during the last 
decenny. However, most studies concern buoyancy 
driven convection to which several linear [1] and non- 
linear analyses [4-9] where dedicated. Only a few pap- 

ers deal with the Marangoni instability [10-13], but 
all of them are restricted to a linear approach, From 
the previous works, we particularly notice the fol- 
lowing properties : 

(1) 

(2) 

(3) 

The effect of the magnetic field is negligibly 
small when the Chandrasekhar number Q, 
which is a dimensionless number measuring the 
effect of the magnetic field, is smaller than 
unity ; in contrast, the influence of the magnetic 
field becomes relevant when Q becomes greater 
than 10 [10]. 
The ratio between thermal and magnetic diffu- 
sivity x/re plays an important role in magneto- 
convection; indeed, if ~c/re << 1 convection is 
steady, while for x/r  e >> 1 convection sets in as 
an oscillatory instability [1, 11]. 
In the specific problem of convective motion at 
the surface of the sun, the Prandtl number Pr 
is less than unity and the magnetic field is very 
strong [14]. However, for most liquids used in 
experiments on earth, the Prandtl numbers are 
rather large as they range from 100 to 1000. It 
was shown from Scanlon and Segel's non-linear 
analysis [15] that the influence of the Prandtl 
number on convection problem is of order of 
the ratio Pr/(1 +Pr) ,  from which follows that 
the approximation of an infinite Prandtl num- 
ber is reasonable as soon as Pr > 5. The systems 
we have in mind in this work are viscous mag- 
netic layers, suspensions of small magnetic par- 
ticles in a fluid carrier. Typically for the mag- 
netic fluid EMG widely used in experiments on 
earth, one has Pr = I00. 

The purpose of the present work is to propose a 
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NOMENCLATURE 

a dimensionless wave number 
d thickness of the layer 
b ( = d/dz)  non-dimensional z-space 

derivative 
H0 strength of the applied uniform 

magnetic field 
H(/-L~, H,,/4..) magnetic field 
hT heat transfer coefficient 
h Biot number, hTd.~-I 
[ horizontal extent 
L linear growth disturbance 

coefficient 
L linear operator 
M linear operator 
M a  Marangoni number 

( -  8T~)0cPV)-'flTd 2 
N, NI, N2 non-linear operators 
p pressure 
Pm magnetic Prandtl number, vr~ f 
Pr Prandtl number, vK 
Q Chandrasekhar number, 

rl( Hod)2( 4npvr¢) - L 
re electrical resistivity 
T temperature 
T~ dimensionless linear temperature 

solution 
T~ dimensionless second-order 

temperature solutions 
To temperature at the lower surface 
Tu temperature at the upper surface 
u(u, v, w) velocity field 
z, y, z space coordinates 
Y, Z time-dependent perturbation 

amplitudes. 

Greek symbols 
c~, fl constants 

fit vertical temperature gradient 
(To- -  ru )d  1 

7 coefficients of quadratic terms in 
amplitude equations 

8T partial temperature derivative 
operator 

gt partial time derivative 
8x, 8,,, 8~ partial space derivative with respect 

to x, y and z 
8,.~, 8r,., 8~. second-order space derivatives 

with respect to x, y and z 
~c, e,, e2 coefficients delimiting the stability 

domain of the selected cell pattern 
distance to the threshold 
( M a  - M a  c) ( M a  ~) - i 

thermal diffusivity 
2 thermal conductivity 
r/ magnetic permeability 
v kinematic viscosity 
V(~x, 0,, ?~:) nabla operator 
V~ horizontal laplacian operator, 

8,~ + (?y,. 
surface tension 

p density 
q5 selected planform function 
4~ auxiliary functions (i = 1 . . . . .  4). 

Subscripts 
r reference solution 
): z-fixed coordinate. 

Superscripts 
* adjoint quantity 
c critical value 
(n) the order of solution (n = 1,2). 

weakly non-linear analysis of Marangoni instability 
problem in a thin electrically heat conducting layer, 
of infinite Prandtl number and submitted to a normal 
magnetic field. In particular we wish to emphasize the 
role of the magnetic field and the nature of the thermal 
properties at the lower boundary on the nature of 
the convective pattern observed beyond the critical 
instability threshold. 

Experiments indicate that the preferred convective 
structures are either rolls, hexagons or hybrid struc- 
tures. To solve the problem we use the procedure 
proposed by Scanlon and Segel [15], and revisited by 
Bragard and Lebon [16], which consists essentially of 
expressing the relevant fields in terms of time-depen- 
dent amplitudes. 

2. THE MATHEMATICAL MODEL 

Consider an electrically conducting horizontal fluid 
layer of infinite horizontal extent and thickness d, 
bounded below by a rigid plane, which is either per- 
fectly heat conducting or adiabatically insulated ; the 
upper surface is free and open to air, it is heat conduct- 
ing, undeformable, but subject to a surface tension 
~(T) decreasing linearly with the temperature T: 

~ ( T ) = ~ ( T o ) + ~ ( T - - T o )  (88~T < 0) (1) 

To is a reference temperature, say the temperature 
To at the lower boundary. The layer, assumed to be 
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incompressible, is heated from below and submitted to 
a homogeneous vertical magnetic field H0. A reference 
frame xyz is at tached at  the lower plate with the z- 
direction normal to the fluid and orientated in the 
direction of  the magnetic field Ho. In the reference 
state the fluid is at  rest and heat propagates  only by 
conduction ; the corresponding velocity v(u, v, w) and 
temperature T fields are given by 

Vr=0,  T r = T o - f l T Z  (2) 

fix stands for ( T o -  T.)/d where T~ is the temperature 
at  the upper boundary.  Within Boussinesq's approxi-  
mation,  the governing equations for the perturbat ions 
of  the reference state characterized by a uniform ver- 
tical magnetic field and absence of motion are [3] : 

V" v = 0 (3) 

0tv + (v" V)v - 4n~ [(H" V)H + HoH. ]  

P +  t /IHIZ]+ 
= --V 8rip J yV2¥ (4) 

c~ t T +  (v" V) T = x V  2 T +  fl.rw (5) 

0~H+ (v. V)H = ( H ' V ) v + H o v , + r e V Z H  (6) 

V" H -- 0. (7) 

In equations (3)-(7), we have introduced the following 
nota t ion:  H(Hx, Hy, Hz) is the magnetic field in the 
fluid, p the pressure, r / the  magnetic permeability, re 
the electrical resistivity, v the kinematic viscosity, p the 
density, x the heat diffusivity ; we recall that  gravity is 
neglected everywhere. In the energy balance, we have 
omitted not  only the viscous heating, but also the 
Joule heating. Applying twice the curl operator  on 
equation (4) and using the constraints (3) and (7), 
one obtains the following relations for the x, y, z- 
components  written in dimensionless form;  distance, 
time, temperature and magnetic field have been scaled 
by d, d2/x, fld and Hor./ro, respectively : 

Pr-t[OtVZw + V 2 (v • Vw) - OPmV21 (H • VHz) 

- t3z~ (v" Vu) - t3zy (v" Vu) + [QPm Oz,:(H" VH~) 

+8v , (H 'VHy)]  = V ' w +  Q ~3:V2/-/. (8) 

Pr-  ~ [0t (re u + 0,-. w) + ¢3yy (v" Vu) + Oxy (v- Vv) 

- QPm Oyy(h • VH~)] - Q 0~ (V21H~ + OxzH~) 

= V 2 ( V ~ u + G w )  (9) 

Pr - i [¢3t (V2 v + O,,~ w) + ¢3x~ (v" Vv) - axy (v- Vu) 

- QP~ O~x (h" VHy)] - Q O~ (V~ 2 Hy + dyzH_.) 

= v ~ ( v , ~ + G w )  (10) 

The z-component  of equation (6) is given by 

Pr-  'Pro [c~tH~ + (v" VHz) - (H" Vw) ] = O~w + Vz I-I~. 

(11) 

Expressions of  the horizontal  components  Hx and Hy 
of  the magnetic field are obtained by applying twice 
the curl operator  on equation (6) and leads to : 

Pr-~Pm [c~t (V 2 H~ + c~:~H=) + ~yy (V" VH~) 

-- 0:,y (v • VHy) + 8~y(H" Vv) - Oyy(H • Vu)] 

= O~(V~u+O~zw)+V2(V~nx+O~n2) (12) 

Pr-  ' em[Ot (V2 Hr + OzyHz) + ~xx(V " VHy) 

-- Ox~ (v • VH:,) + c~,,y (H • Vu) - axx(H • Vv)] 

= Oz(V2v+t~,zw)+Vz(V2Hy+&ytt:). (13) 

The Prandtl  number  Pr, the magnetic Prandtl  Pm and 
Chandrasekhar  number  Q are defined, respectively, 
as" 

v v riH2d 2 
P r = - ,  P m = - - ,  Q =  

x re 4rcprev " 

It is important  to distinguish between the magnetic 
Prandtl  number,  Pm and the viscous Prandtl  number,  
Pr. Here we take Pm < Pr to guarantee the exchange 
of stability. Of  course, this condit ion is automatical ly 
satisfied by taking Pr = oo, and this is supplementary 
motivat ion for setting Pr = m. Since it is assumed 
that Pr = oo, the only non-linear terms are those 
appearing in the energy equation (5). Expressions (8)-  
(13) simplify then as follows: 

V 4 w - Q O = w  = 0 (14) 

V 2 T +  w = Ot T +  (v" VT) (1 5) 

VZlu = -Ox-w (16) 

V21v = - 0yzw (1 7) 

V2Hz = --6qzw (18) 

V~H~ = -O , ,H ,  (19) 

V~Hy = -OyzI-I~. (20) 

It is observed that  the problem is characterized by a 
separation of variables so that  one can solve the two 
first equations (l 4)-(15) independently of  the remain- 
ing equations (l 6)-(20). The next step consists in solv- 
ing equations (14)-(15) associated with the following 
boundary conditions : 

at  z = 0:  W = azw = 0 (21) 

T = 0 (conducting case), dzT = 0 (insulating case) 

(22) 

a t z  = 1 : tgzzw-MaV2T= 0 (23) 

cZT+hT  = 0 (24) 
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w = o (25)  

wherein Ma and h stand for the dimensionless 
Marangoni  and Biot numbers defined, respectively, 
by 

8~ x~/3T d2 hTd (26) 
Ma = - a T ]  pyre' h -  2 

with hr the heat transfer coefficient through the upper 
surface and 2 the heat conductivity of the fluid. 
Relation (23) expresses the equilibrium between the 
viscous forces and the surface tension efforts. Equa- 
tion (24) describes the heat transfer at the upper 
boundary,  while equation (25) states that the upper 
surface remains flat. 

3. WEAKLY NON-LINEAR SOLUTION 

The non-linear equations (14) and (15) and the 
associated boundary conditions (21)-(25) are solved 
by means of an iterative process. With Scanlon and 
Segel [15], we introduce the following differential 
operators : 

L =  1 V 2 , N = 8 t " ~ ¥ ' V  , 

~.-z)== i 0 0 

M =  0 0 

0 v~ 

in terms of which equations (14)-(25) take the sym- 
bolic form 

L(u) = N(u) +MaM(u) (27) 

where u is the perturbation vector with components 

u = [w(x,y,z, t), T(x,y,z,  t), T(x,y, 1, t)]. (28) 

For  further purpose, it is also necessary to define 
the scalar product of two vectors a = (a~, a2, a3) and 
b = (bl ,  b2, b3) by 

± i , i  <a, b> = l im 4f  2 J-e  J - t  dx dy[dz(a~ b, 

+a2b2)+(a3b3)~=l] (29) 

where t ~ represents the horizontal extent. In view of 
the iterative procedure, expression (27) will be written 
as 

[L-- MaCM]u (') = [N+  ( M a -  Ma¢)M]u (~- 1) (30) 

where the right-hand side contains only small terms, 
and where Ma ~ is the critical Marangoni  number  
obtained from the linear theory. In view of future 
developments, we define the distance from the thr- 
eshold by e =(Ma-Ma~) /Ma ~, assumed to remain 
small in order to ensure convergence. 

3.1. The linear solution 
The first step consists in solving the linear problem 

corresponding to n = 1 and u (°) = 0. The solution u °) 
can be written as 

u °) = [wj (z), TI (z), Ti (l)]~b(x,y, t) (31) 

where the form function ck(x,y, t) is solution of the 
Helmholtz equation 

V~d?+a2dp = 0 (32) 

with a the dimensionless wavenumber. The functions 
wffz) and T,(z) are solutions of the differential equa- 
tions 

[(/52 _ a2)2 _ Q/52]w, = 0 (33) 

(/52 -a2)Tj  + wl = 0 (34) 

associated to the following boundary conditions : 

a t z = 0 : w ~  = / s w ,  = 0  (35) 

Tt = 0 (conducting case) (36) 

/ST~ = 0 (insulating case) (37) 

a t z = l : w t  =/ST~+hT~ = 0  (38a, b) 

/sZwj +a2MaT1 = 0 (39) 

where/3  stands for d/dz. It is easily checked that the 
following expressions for wffz) and T~(z) verify the 
boundary  conditions (35)-(38) : 

w~ (z) = A (cosh ¢~z + B sinh ~z + C cosh flz + D sinh flz) 

(40) 

cosh ~z + B sinh ~z 
Tt(z) = A Esinhaz+Fcoshaz+ a 2_~2 

Ccosh/3z+D sinh/3z~ (41) 

+ a ~ --/3~ ,] 

A is an arbitrary constant  while the quantities e, 13, B, 
C, D, E and F depend on h, Q and a. The unknown 
quantities B, C and D appearing in expression (40) of 
wffz) are obtained by imposing w~(z) to satisfy the 
boundary conditions (35) and (38a) ; it is found that 

cosh f l -  cosh ~ . 
B =  a , C = - I ;  D = - ~ B  

sinh ~ - ~ sinh/3 

wherein 

(42) 

Q i/2 +k, /2  Q i/2 _A1/2 
~ =  2 ; f l =  2 ; A = Q + 4 a 2 "  

(43) 

The quantities E and F in expression (41) for T~(z) 
are obtained from the boundary conditions (36), (37) 
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and (38b) : for a perfect heat conductor at z = 0, one 
has 

1 1 
F = (44) a s _ f12 a 2 _ ~2 

, [ 
E =  - (acosha+hsinha) F(asinha+hcosha) 

+ e s i n h e + B c o s h e  + ~  Csinh ~ + D c o s h ~  
a 2 _ ~ 2  a s _ f12 

h/ 'cosh 0¢+ B sinh a Ccosh ~ + D  sinh ~ ]  

and, for an insulating wall, one obtains 

(45) 

E = -- a B 2_ct2 a s 

- ,  [ 
F - (a sinh a + h cosh a) E(a cosh a + h sinh a) 

~(sinh ~+Bcosh  ~) Cs inhf l+Dcoshf l  +~ 
a 2 _ 0~2 a s - -  1~2 

+ 

(_cosh c~+ B sinh ~ Ccosh f l+Ds inh~]  
+ h \  a2_~  z + ~ _ ~  }_]. 

(47) 

Condition (39) yields the expression of the Marangoni 
number in terms of the wavenumber, the Biot and 
Chandrasekhar numbers for both conducting and 
insulating cases : it is found that 

3.2. The second-order solution 
The form function (9 is selected in order to match 

the experimental observations; it will be written in 
terms of two spatial modes of the same wavenumber 
a with two unknown amplitudes Z(t) and Y(t) 
depending on the time : explicitly one has 

(9(x, y, t) = Z( t) cos(ay) + Y( t) cos(ml ax) cos(m2ay) 

(49) 

with m, = x / ~  and m2=1/2.  For  Y = 0  and 
Z = constant, the solution (49) consists of rolls, while 
for Y =  +2Z,  it describes hexagonal cells. The 
second-order solution is obtained by integrating the 
inhomogeneous differential equations (30) for n = 2. 
Existence of non-trivial solutions is ensured by the 
Fredholm condition [15], stating that 

(u*, [N+ (Ma-MaC)M]u °))  = 0 (50) 

where 

u* = [w*(x, y, z, t), T*(x, y, z, t), T*(x, y ,1, t)] 

(51) 

is the solution of the linear adjoint problem, which is 
given in Appendix A. The orthogonality condition 
imposes that the amplitudes Y(t) and Z(t) satisfy the 
ordinary differential equations 

= LeY+vYZ;  2 = LeZ+ 4 y2 (52) 

wherein a dot means derivation with respect to time, 
the coefficients L and ? are easy to determine and 

Ma 
-- ~t ~ (cosh a + B sinh ~t) - ~2 (C cosh fl + D sinh ~) 

a 2 / E  sinh a + Fcosh a + cosh ~ + B sinh ct 
\ a s -- ct 2 

Ccosh_~+D sinh/~" 
+ a s _/~2 ] 

(48) 

The minimum of the neutral stability curve, Ma(a) vs 
a (for fixed values of Q and h) yields the cor- 
responding critical Marangoni number Ma c and the 
critical wavenumber a c. The critical Marangoni and 
wavenumbers for different values of Q and h in both 
the conducting and insulating cases are reported in 
Figs. l(a) and (b). 

It is noticed that by increasing Q or h, the system 
becomes more stable as confirmed experimentally. It 
is known that the linear theory does not predict the 
shape of the convective cells. Experimentally it is 
observed that these cells usually take the form of either 
hexagons or rolls or hybrid structures. To determine 
the geometry of the pattern, one needs to proceed to 
the second-order solution of the problem. 

depend generally on the Biot and the Chandrasekhar 
numbers h and Q. 

The second-order solution 

I1 (2~ = [w(2)(x,y,z, t), T(2)(x,y,z, t), T(2~(x, y, 1, t)] 

(53) 

obeys the equations 

VZT(2)+w(Z)=T'(b+Tll)w'(  (9'+(92(932 2 (94 ) 

+w,1)Tl((9, +(92+(93+(94) (54) 

V4 w (2) - Q1):w (z) = 0 (55) 
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(a) 2500 

Q 
1 10 100 
I . . . . . . . .  ; . . . . . . . .  ; 

1 0 0 0  
J • • • • = . h ~  

/ /  
M~ 150(: f !4 a c 

. . . . . . . .  I . . . . . . . .  1 

10 Q 10o 1000 

q 
1 10 100 1000 
; . . . . . . . .  ; . . . . . . . .  ; i , i I . . . . .  7 

(b) 2500. 

ac c 
M a  / ,4 

• ,,, . . . . . .  I . . . . . . . .  1 . . . . . . .  ; 1  

10 100 1000 
Q 

Fig. 1. (a) Critical Marangoni number (solid lines) and critical wavenumber (dashed lines) vs Chan- 
drasekhar number in the conducting case. The values of the Biot number are 1, 10; the lower curve 
represents the smallest Biot number ; (b) critical Marangoni number (solid lines) and critical wavenumber 
(dashed lines) vs Chandrasekhar number in the insulating case. The values of the Biot number are 1, 10 ; 

the lower curve represents the smallest Biot number. 

1~ 2 w (z) _ MacV~ T (2) = eMacV 2 T (1) 

associated to the boundary conditions : 

at z = 0 : w  (2) = Dw (2) = 0 

T (2) = 0 (conducting case) 

/ ) T  (2) = 0 (insulating case) 

a t z  = 1 :w (2) = D T ( 2 ) + h T  (2) = O. 

(56) 

The functions q% (i = 1,2, 3, 4) appearing in equation 
(54) are defined by 

Z 2 y2 

y2 
q~2 = ~ - c o s ( a y )  + Y Z c o s ( m l  ax) cos(m2ay) 

y2 
~b3 = -~- cos(2ml ax) + Y Z  cos(ml ax) cos( 3mzay) 

(63) 
(57) 

Z 2 y2 
(58) q~4 = ~ -  cos(2ay) + -4-- cos(2ml ax) cos(ay). (64) 

(59) 
The solution of  equations (54)-(60) may be written in 

(60) the form 

w (2) = w3 (z)~b3 + w4(z)c~4 (65) 

r ~2~ = K ( z ) ; b +  7", (z)4~, 
(61) 

+ T2 (z)~b2 + T3 (z)~b3 + T4 (z)q~4 (66) 

where the unknown functions w3, w4, K, T, 
(62) 

( / =  1,2, 3, 4) are made explicit in Appendix B. The 



Weakly non-linear Marangoni instability 1333 

application of the Fredholm condit ion (50) on the set 
(54)-(60) results in 

i, /~T(') + T( ' ) )dv  T* t ~ -  + N~ T (l) + N1 T (2) N 2  

fs 8w* +(Ma-Ma ~) O~z-V~T°)dS = 0 (67) 
(z=l) 

wherein N~ = u °)" V, N2 = u °)" V while v is the volume 
of a cell bounded by a surface S. In (67) only two 
integrals proportional to cos2(ay) and cos2(m,ax) 
cos2(m2ay) are not  zero and they give rise to the third- 
order amplitude equations 

~'= LeY+?YZ+PYZ2+RY 3 (68) 

P 2 2 = L e Z + ~ y 2 + R j Z 3 + ~ Y  Z. (69) 

Equations (68) and (69) are formally the same as those 
found by Scanlon and Segel [15] and Bragard and 
Lebon [16, 17] with the difference that here the 
coefficients L, 7, RI, P and R = (P, + R)/4 depend on 
the Chandrasekhar number  besides Biot's number. In 
deriving the relations (68) and (69), it is assumed 
that the function ~ is proportional to 7~b2 [18]. This 
assumption allows to eliminate the second order 
derivatives Y and Z and does not  alter the stability 
properties of the steady solutions of (68) and (69), as 
shown by Segel and Stuart [18]. 

The next problem consists in determining the steady 
solutions of (68) and (69) and to discuss their stability 
with respect to small disturbances. Each steady solu- 
tion represents either a state of conduction without 
convection or a convective pattern, e.g. rolls, hexa- 
gons or hybrid cells. Their stability will depend on the 
value of the parameter e measuring the deviation from 
the critical Marangoni  number. 

3.3. Stability of the steady solutions 
In this section, we first examine the behaviour of 

the coefficients appearing in the amplitude equations 
(68) and (69) as a function of the Chandrasekhar 
number  Q. The factor L expresses the linear growth 
of the disturbance and is found to increase with the 
increasing values of the Chandrasekhar number. The 
coefficients (P, R, R0 of the third order terms of the 
amplitude equations (68) and (69) are found to be 
negative, whatever the values of Q and h, while the 
coefficient 7 of the quadratic terms remains positive. 
If e is negative (subcritical domain),  the disturbance 
decreases more rapidly with time in the conducting 
case than in the insulating case for the same Biot 
number. For  positive values ofe the solutions increase 
fastly with time, but  the negative coefficients of the 
non-linear terms act in order to stabilize the solution. 

We are now in a position to examine the stability, 
with respect to small disturbances, of the fixed points 
corresponding to the equilibrium solutions of the set 

Table 1. The hierarchy of stable configurations as a function 
of parameter e 

Ma- Ma c 
e - - -  Stable configurations 

Ma ~ 
e < ec Conductive state 
ec < e < 0 Conductive state, hexagons 
0 < e < e, Hexagons 
e~ < e < e.2 Rolls, hexagons 
e > e2 Rolls, hybrid cells 

(68)-(69). There are nine fixed points about  which the 
following comments can be made : 

I : Y = Z = 0 .  

This situation corresponds to the purely conductive 
state : no motion is observed. 

I I a . b : Y = 0 ,  Z =  +_(eL/-RI) 1/2 

Since R, < 0, this solution exists only for e positive 
and represents a two-dimensional planform, i.e. rolls. 
The plus and minus signs (subcases a and b) describe 
rolls moving clockwise and counterclockwise, respec- 
tively. 

III~,b: Y =  2Z;  Z = [2(4R+P)]  -~ 

× [-~+ (72 -4eL(4R+P)) '/2] 

I V a . b : Y = - - 2 Z ;  Z = [ 2 ( 4 R + P ) ] - '  

× [ -7---  (72 -4eL(4R+p))I/2]. 

In the cases III and IV, solutions exist only for 
e < ec = 72/4L(4R + P), and represent hexagonal 
cells ; a plus sign in Z corresponds to subcase a and a 
minus sign to subcase b. It is not  necessary to consider 
solutions III and IV separately, because the system 
(68)-(69) is invariant under the transformation Y 
- - y .  

- 7  Va.b:Z = - - ;  
P-R1 

r= +(-R) '/2[eL+ R,~2 ]~/2 
(e )U " 

A solution exists for e > e, = - R,72/L(P- R1) 2, a and 
b corresponds to the signs + and - ,  respectively. It 
follows from V that roll cells are obtained for e = Et 
and hexagonal cells for e = ~2 = 72(4R+RO/ 
(P--R02; otherwise the pattern is hybrid. 

It was observed that the cases a and b in solutions 
I -V are different in view of their stability analysis 
with respect to e. The stability of the solutions I -V 
is summarized in Table 1. We observe that in the 
subcritical domain (ec < e < 0), only hexagon cells are 
stable. For  0 < e < el only stable hexagons will be 
observed. For  values of e > el, rolls as well as hexa- 
gons are stable. For  sufficiently large values of 
e(e > e2), rolls and hybrid cells are predicted. It is also 
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Fig. 2. Coefficient e~ vs Chandrasekhar number, in the conducting (solid lines) and in insulating cases 
(dashed lines). The values of the Biot number are 1, 10 and in each case the lower curve corresponds to 

the largest Biot number. 

checked that only hexagons for which the fluid is rising 
at the centre are stable. 

The behaviour of the coefficients ec, 5~ and 52, with 
respect to the Chandrasekhar Q and the Blot h number 
is reproduced in Figs. 2 and 3. Whatever the thermal 
property of the lower walls either insulating or con- 
ducting, the parameter e may take negative values and 
this means that a region of subcritical instability is 
predicted; apart from a small region corresponding 
to low magnetic fields, the region of subcriticality 
decreases with increasing values of Q (see Fig. 2). 
Figures 3(a) and (b) show that at large values of Q, 
the values of eL and 52 remain practically constant 
which means that above a critical value of Q, the 
application of a magnetic field leaves unmodified the 
structure of  the planform. In contrast, for small mag- 
netic field strengths and in the case of a conducting 
wall, ej and e2 are seen to decrease and afterwards 
to relax slowly towards their asymptotic value. For 
insulating walls, ej and e2 decrease for low values of 
h: at large values of the Blot number h, eL and 52 
increase with a maximum value for Q finite. It is also 
seen that eL and e2 become larger and larger with 
increasing values of the heat transfer coefficient at the 
upper boundary. 

4. C O N C L U S I O N S  

A weakly non-linear analysis of Marangoni con- 
vection in a thin horizontal electrically conducting 
fluid subject to a vertical temperature gradient and a 
vertical external magnetic field is proposed. Several 
assumptions have been introduced, like absence of 
gravity effects, an infinite Prandtl number, no defor- 
mation of the upper surface of the layer which, in 
addition, is supposed to extend laterally to infinity, 
all the thermal, viscous and electromagnetic material 
coefficient, like viscosity, heat conductivity, resistivity 
are assumed to be constant. A semi-analytical solution 

is obtained based on the amplitude method developed 
by Scanlon and Segel [15]. We have also emphasized 
the differences obtained by assuming, respectively, 
that the lower surface of the layer is perfectly con- 
ducting and perfectly adiabatically insulated. 

The main results that were obtained can be sum- 
marized as follows : 

(1) In absence of magnetic fields, one recovers, as 
it should, earlier results obtained by other 
authors [16, 17]. 

(2) A region of  subcritical instability is displayed 
and the area of this region is shown to decrease 
at sufficiently large values of the Chan- 
drasekhar with the magnetic field. 

(3) After that the instability has set in, convective 
cells taking the form of hexagons are predicted 
as far as the parameter 5 = ( M a - M a ~ ) / M a  c 

measuring the distance from the critical thr- 
eshold M a  c remains smaller than 5~ ; it is shown 
that the value of  5~ is rather sensitive to the 
strength of the magnetic field as long as Q 
remain small ; by increasing Q, 5~ remains prac- 
tically constant. 

(4) By still augmenting e up to a value e = ~2, new 
patterns taking the form of rolls or hexagons 
are displayed. Like eL, this value ~2 is mainly 
sensitive to Q for small Q-values. 

(5) For  5 larger than 5j, rolls and hybrid cells are 
predicted. It is worth mentioning that the con- 
vective cells have qualitatively the same form 
as in absence of a magnetic field with the same 
hierarchy as exhibited by Table 1. 

A last remark is in form. Since the present analysis is 
a weakly non-linear approach, the conclusions about 
the parameters eL and ez, when they take values much 
larger than one, must be considered as only quali- 
tatively valuable. A more general non-linear approach 
overcoming this difficulty is presently under progress. 
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Fig. 3. (a) Coefficient ~1 vs Chandrasekhar number, in the conducting (solid lines) and in insulating cases 
(dashed lines). The values of the Blot number are I, I0 and in each case the lower curve corresponds to 
the smallest Biot number ; (b) coefficient e2 vs Chandrasekhar number, in the conducting (solid lines) and 
in insulating cases (dashed lines). The values of the Biot number are 1, 10 and in each case the lower curve 

corresponds to the smallest Blot number. 
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APPENDIX A 

The linear adjoint problem 
The linear problem may be written in the form 

[E-MaCM]u = 0. (AI) 

Besides Marangoni boundary condition, the remaining ones 
a r e  

z = 0 :w = / g w  = 0 (A2) 

z = 1 : w = I ) T + h T  = 0. (A3) 

The adjoint operator is defined by 

(u*, [/2-- MaiM]u)  = (u, [/S*, MaCM*]u *)  (A4) 

where u* = (w*, T*,/3w~'~)) is the adjoint eigenvector solution 
of 

[/S* - g a ' M * ] u  * = 0. (A5) 

By integrating by parts the left-hand side of (A4) and using 
(A2) and (A3), one obtains 

[L* - M a i M  .1 = 0 V ~ 

0 (/) + h)~= ~ Ma~V21 

with the corresponding boundary conditions : 

at z = 0:w* = / ) w *  = 0 (A6) 

T* = 0 (conducting case), /~T* = 0 (insulating case) 

(A7) 

a t z  = 1 :w* =/~2w* = 0. (AS) 

By analogy with the linear direct problem, let us write the 
solutions in the form of  separable variables : 

w* = w*(z)ch(x,y,t), T* = T*(z)(o(x,y,t). (A9) 

To determine the Fredholm condition, it is necessary to 
calculate T*(z) and/~w*(1), which are given by 

a cosh a + h sinh a 
T*(z) = As inhaz ,  /)w*(1) = A 

a 2 m a  ~ 

(A10) 

for the conducting case, for the insulating case, it is found 
that 

a sinh a + h cosh a 
T*(z) = Acoshaz ,  /~w*(1) = A (Al l )  

a2 Ma ¢ 

A is an arbitrary constant which is not rel 
calculations. 

APPENDIX B 

Second-order solution 
The problem we are faced with is the resolution of  equations 
(54)-(56) associated with the boundary conditions (57)-(60) 
by using expressions (61)-(64) for the functions ~ 
(i = 1,2, 3, 4). Since the functions ~ and q~z contain two 
terms, one proportional to cosay and the other to 
cos am~x cos amy ,  the corresponding functions K(z) and 
T2(z) will also consist in two terms. The functions K(z) 
and Tz(z) are written as the sum of the solutions T(z, t) and 
T(z t) proportional to cosay and cosamtxcosamzy  re- 
spectwely, with T and T satisfying the equations : 

y2 _ /)wL 
(/)z - aZ)7  ~=  T , 2 + ~ - ( 1 , - ~ + w , I ) T ,  (BI) 

Bw~ 
(Z~2-a:)7"= y, ?+ r z  Y~-5-  +w, Or, (B2) 

and the boundary equations (57)-(60). After solving the 
problem by the Green function procedure, one obtains, in 
the conducting case : 

{f0 - 1 sinh au(a cosh a(1 - z) 
K(z) - a(acosh a + h  sinha) 

i + h s i n h a ( 1 - z ) ) T j ( u ) d u +  s inhaz (acosha (1 -u )  
z 

+h  sinh a(l - -u))r l  (u) du} (133) 

and 

- 1  
T2(z) = 

a(a cosh a + h sinh a) 

x { f ~ s i n h a u ( a c o s h a ( 1 - z ) + h s i n h a ( 1 - z ) )  

x F(u) du + sinh az(a cosh a(1 - u) 
z 

with 

+ h sinh a(1 - u))F(u) du t (B4) 

F(u) = wl (u)l)Ti (u) + T~ (u)l~wl (u) 
2 

For the insulating case, it suffices to substitute sinh au sinh az, 
sinh a and cosh a by cosh au, cosh az, cosh a and sinh a respec- 
tively. The functions w3(z) and w4(z) are solutions to 

[(/32 - ja2)  2 -Ql~Z]wj(z) = 0, ( j  = 3,4) (B5) 

with the boundary conditions 

z = O :  w~= l~w s = O  (B6) 

z =  1: w j = 0 .  (B7) 

They will be written as 

w, = Aj[cosh ~jz + B s sinh %z + Cj cosh fljz + Dj sinh 3sz] 

(B8) 

where Bj, Cj and Dj are obtained from the boundary con- 
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ditions (B6) and (B7): they have the same form as B, C, and 
D in equation (42) by replacing at by ctj, fl by flj and A by 
Aj = Q + 4ja 2. The constants Aj ( j  = 3, 4) have to be deter- 
mined together with the functions Ts(z) and T4(z), the latter 
satisfy the equations : 

(/32 _ ja  2) Tj(z) = - wj(z) + w l / 3 T -  6 T~/3wl =- F(z, A j) 

(89) 

wherein ~ = 1/2 i f j  = 3 and c5 = 1 i f j  = 4, with at z = 1 

/3~ wj +ja 2 Ma c Tj(z) = 0. (B 10) 

Applying the Green function method, the above set may be 
written, for the conducting case, as 

Tj(z) = fo sinh ax/~u 
ax/ )  

x (ax//) cosh a~/)( 1 - z) + h sinh ax/~(l - z)) 

ax//)coshax~j + h s i n h a ~ j  

x F(u, A j) du - f i sinh ax/jz  
a x~J 

x (ax/)c°sh a v / ) ( 1 - u ) + h s i n h a x / ~ ( 1 - u ) )  (B l l )  

ax/~coshav/j j+hsinhaq/)  

x F(u, A j) du. 

After making use of the boundary condition (B I 0), the con- 
stants Aj are given by 

ja2 MaC I/ sinh(ax/Jju)Fj(u) du 
*3 u 

Aj = (B12) 

ja2 Ma" .I~ sinh(ax/~u)w~(u) du 

+ (ax/~ cosh aa/~ + h sinh av/})13 2 w;(l) 
with 

w}(u) = (cosh ~ju + Bj sinh ~;u + Cj cosh flju + D i sinh fl/u) 

(813) 

Fs(u) = wl (u)/3Ti (u) -- 6TI (u)/3wl (u) - wj(u). (B 14) 

The corresponding expressions for the insulating case are 
obtained by changing sinhax/)u,  sinhax/)z,  s inhax/) ,  
coshax/ )  in coshax/~u , coshax/)z,  coshax/) ,  sinhax~',  
respectively, and for ~(u)  given by (B 14) by replacing TI (u) 
by its expression in the insulating case (41). The function 
To(z) satisfies the following equation and boundary con- 
ditions : 

1)2To = T,/3w, +wt/3T.  = Go(z) (B15) 

at z = 0 : To = 0 (conducting case), (B16) 

/)T0 = 0 (insulating case) 

a t z  = 1 :/3To+hTo = 0. (B17) 

By applying the Green function method, it is found that in 
the conducting case : 

To(z) = f~ (z l ~ -  l)uGo(u)du 

+ I'z(ul-~-l)ao(~)du (B18) 

and in the insulating case 

l + h  l 

(B19) 


